Hybrid Deep Learning Model for Wheat Yellow Rust Disease Detection

CHF 47.55
Auf Lager
SKU
T1EVCMT4FSM
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

In many regions of the world, wheat quality and yield losses have been increased due to wheat rust diseases. The identification of yellow rust disease along with the percentage of tissues damaged by the rust disease in terms of severity levels is very important and usually it is achieved through experienced evaluators or computer vision techniques. With the help of computer vision techniques, the cost and time should be minimized. This study presents classification model for wheat yellow rust with different severity levels of disease. It is achieved through STARGAN and Convolutional neural network (CNN). The STARGAN is proposed in this study for data augmentation. After conducting several experiments with parameters such as different epochs, batch sizes, learning rate, and dropout rate this study achieves 94.07% classification accuracy to classify wheat yellow rust from the wheat normal plant. During severity measurement, CNN achieved 94.3% validation accuracy of wheat yellow rust at high severity level.

Autorentext

Deepak Kumar é professor na Escola de Engenharia e Tecnologia (Ciências Aplicadas), Instituto Internacional de Investigação e Estudos Manav Rachna (MRIIRS), Índia.Sandhya Singh tem um doutoramento em Matemática pelo MRIIRS, Índia.Pooja Khurana é Professora Associada na Escola de Engenharia e Tecnologia (Ciências Aplicadas), MRIIRS, Índia.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786204210339
    • Sprache Englisch
    • Genre Economy
    • Größe H220mm x B150mm
    • Jahr 2021
    • EAN 9786204210339
    • Format Kartonierter Einband
    • ISBN 978-620-4-21033-9
    • Titel Hybrid Deep Learning Model for Wheat Yellow Rust Disease Detection
    • Autor Deepak Kumar , Vinay Kukreja
    • Untertitel Detection of Wheat Yellow Rust Severity Levels using Deep Learning Model
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 84

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470