Hybrid Intelligent Technologies in Energy Demand Forecasting

CHF 165.55
Auf Lager
SKU
8DPPEB0GJGI
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies.

It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory.

The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.




Describes the most advanced and accurate energy demand forecasting models Demonstrates how cutting-edge hybrid intelligent technologies can be combined with traditional models Includes a wealth of examples and illustrations to demonstrate the effectiveness of modern demand forecasting models

Autorentext

Wei-Chiang Hong is a professor in the Department of Information Management at the Oriental Institute of Technology, Taiwan. His research interests are focused on hybridized meta-heuristic algorithms (the genetic algorithm, simulated annealing algorithm, immune algorithm, particle swarm optimization algorithm, ant colony / artificial bee colony optimization algorithm, cuckoo search algorithm, bat algorithm, dragonfly algorithm, etc.) together with the chaotic mapping mechanism, quantum computing mechanism, recurrent neural networks, seasonal mechanism, phase space reconstruction, and recurrence plot theory in the support vector regression (SVR) model, the goal being to provide more accurate forecasting performance by determining the suitable parameters of an SVR model. In this regard, the author has gathered substantial practical experience using hybrid meta-heuristic algorithms with intelligent technologies to improve forecasting accuracy.



Inhalt

Introduction.- Modeling for Energy Demand Forecasting.- Data Pre-processing Methods.- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR's Parameters Determination.- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors.- Phase Space Reconstruction and Recurrence Plot Theory <p

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber Springer International Publishing
    • Gewicht 300g
    • Autor Wei-Chiang Hong
    • Titel Hybrid Intelligent Technologies in Energy Demand Forecasting
    • Veröffentlichung 02.01.2021
    • ISBN 303036531X
    • Format Kartonierter Einband
    • EAN 9783030365318
    • Jahr 2021
    • Größe H235mm x B155mm x T11mm
    • Anzahl Seiten 192
    • Lesemotiv Verstehen
    • Auflage 1st edition 2020
    • GTIN 09783030365318

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470