Hybrid Random Fields

CHF 170.35
Auf Lager
SKU
M4GQM7SIL2E
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

"The authors have written an enjoyable book - rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives."

-- Manfred Jaeger, Aalborg Universitet


This book presents an exciting new synthesis of directed and undirected, discrete and continuous graphical models. Combining elements of Bayesian networks and Markov random fields, the newly introduced hybrid random fields are an interesting approach to get the best of both these worlds, with an added promise of modularity and scalability. The authors have written an enjoyable book---rigorous in the treatment of the mathematical background, but also enlivened by interesting and original historical and philosophical perspectives.-- Manfred Jaeger, Aalborg UniversitetThe book not only marks an effective direction of investigation with significant experimental advances, but it is also---and perhaps primarily---a guide for the reader through an original trip in the space of probabilistic modeling. While digesting the book, one is enriched with a very open view of the field, with full of stimulating connections. [...] Everyone specifically interested in Bayesian networks and Markov random fields should not miss it.-- Marco Gori, Università degli Studi di SienaGraphical models are sometimes regarded---incorrectly---as an impractical approach to machine learning, assuming that they only work well for low-dimensional applications and discrete-valued domains. While guiding the reader through the major achievements of this research area in a technically detailed yet accessible way, the book is concerned with the presentation and thorough (mathematical and experimental) investigation of a novel paradigm for probabilistic graphical modeling, the hybrid random field. This model subsumes and extends both Bayesian networks and Markov random fields. Moreover, it comes with well-defined learning algorithms, both for discrete and continuous-valued domains, which fit the needs of real-world applications involving large-scale, high-dimensional data.

Covers the concepts and techniques related to the hybrid random field model for the first time Offers a self-contained introduction to semiparametric and nonparametric density estimation Written by leading experts in the field

Inhalt
Introduction.- Bayesian Networks.- Markov Random Fields.- Introducing Hybrid Random Fields:Discrete-Valued Variables.- Extending Hybrid Random Fields:Continuous-Valued Variables.- Applications.- Probabilistic Graphical Models:Cognitive Science or Cognitive Technology? ..- Conclusions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642268182
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T13mm
    • Jahr 2013
    • EAN 9783642268182
    • Format Kartonierter Einband
    • ISBN 3642268188
    • Veröffentlichung 15.07.2013
    • Titel Hybrid Random Fields
    • Autor Antonino Freno , Edmondo Trentin
    • Untertitel A Scalable Approach to Structure and Parameter Learning in Probabilistic Graphical Models
    • Gewicht 353g
    • Herausgeber Springer
    • Anzahl Seiten 228

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470