Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Hypoelliptic Laplacian and Bott-Chern Cohomology
Details
This book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann-Roch-Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott-Chern cohomology.
Gives an important application of the theory of the hypoelliptic Laplacian in complex algebraic geometry Provides an introduction to applications of Quillen's superconnections in complex geometry with hypoelliptic operators Presents several techniques partly inspired from physics, which concur to the proof of a result in complex algebraic geometry The method of hypoelliptic deformation of the classical Laplacian was developed by the author during the last ten years Includes supplementary material: sn.pub/extras
Autorentext
Jean-Michel Bismut is Professor of Mathematics at Université Paris-Sud (Orsay) and a member of the Académie des Sciences. Starting with a background in probability, he has worked extensively on index theory. With Gillet, Soulé, and Lebeau, he contributed to the proof of a theorem of RiemannRochGrothendieck in Arakelov geometry. More recently, he has developed a theory of the hypoelliptic Laplacian, a family of operators that deforms the classical Laplacian, and provides a link between spectral theory and dynamical systems.
Inhalt
Introduction.- 1 The Riemannian adiabatic limit.- 2 The holomorphic adiabatic limit.- 3 The elliptic superconnections.- 4 The elliptic superconnection forms.- 5 The elliptic superconnections forms.- 6 The hypoelliptic superconnections.- 7 The hypoelliptic superconnection forms.- 8 The hypoelliptic superconnection forms of vector bundles.- 9 The hypoelliptic superconnection forms.- 10 The exotic superconnection forms of a vector bundle.- 11 Exotic superconnections and RiemannRochGrothendieck.- Bibliography.- Subject Index.- Index of Notation.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber Springer International Publishing
- Gewicht 341g
- Untertitel A Theorem of Riemann-Roch-Grothendieck in Complex Geometry
- Autor Jean-Michel Bismut
- Titel Hypoelliptic Laplacian and Bott-Chern Cohomology
- Veröffentlichung 16.06.2015
- ISBN 3319033891
- Format Kartonierter Einband
- EAN 9783319033891
- Jahr 2015
- Größe H235mm x B155mm x T13mm
- Anzahl Seiten 220
- Lesemotiv Verstehen
- Auflage 2013
- GTIN 09783319033891