Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Image-Based Plant Disease Detection
Details
This book explores an advanced approach to automatic marker-based morphological image segmentation, classification, and disease detection in diseased tomato plants using Support Vector Machine (SVM) classification. It delves into how morphological processing enhances image segmentation accuracy, enabling precise identification of diseased regions in tomato plants. The book also discusses feature extraction techniques, classification methods, and the effectiveness of SVM in distinguishing between healthy and diseased plant areas. This work is particularly useful for researchers, agronomists, and computer vision experts working on precision agriculture and plant disease diagnosis using deep learning and machine learning techniques.
Autorentext
Assistant Professor in UG Department of Computer Science, NGM College,Pollachi. Completed PhD in NGM College. More than 13 Years of teaching experience with specialization in Digital Image processing, Operating System, Deep learning and Machine Learning. Published more than 15 research articles in reputed journals like IEEE,UGC care and Scopus.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786208429010
- Genre Books on Technology
- Anzahl Seiten 76
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 131g
- Untertitel A Machine Learning Perspective
- Autor Jayapriya Palanisamy
- Titel Image-Based Plant Disease Detection
- Veröffentlichung 02.04.2025
- ISBN 978-620-8-42901-0
- Format Kartonierter Einband (Kt)
- EAN 9786208429010
- Jahr 2025
- Größe H220mm x B150mm x T5mm
- Sprache Englisch