Improving dependency parsing using word clusters

CHF 68.75
Auf Lager
SKU
TB1JQN2BUG6
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

Several studies have attempted to improve the accuracy in dependency parsing by including information about word clusters into the parsing models. The use of word clusters are typically motivated by the shortage of labeled training data and domain adaption, attempting to influence a parsing model for use on data from a new domain. This book shows the effect of using cluster-based features in MaltParser, a data-driven parser for inductive dependency parsing. Different clustering features are used for generating clusters, using the K-means clustering algorithm. The clusters are used as a source of additional information in an expanded feature model used by the MaltParser system. Parsing experiments are performed on several different data sets, including the Wall Street Journal and texts from various web domains. Significantly improved parsing results are reported when using a cluster-informed parser compared to the baseline parser. The contents of this book might be of interest to anyone interested in the application of machine learning in language technology.

Autorentext

Jostein Lien, MSc: Studied Informatics: Language and Communication at the University of Oslo.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659794551
    • Genre Information Technology
    • Anzahl Seiten 120
    • Größe H220mm x B150mm
    • Jahr 2015
    • EAN 9783659794551
    • Format Kartonierter Einband
    • ISBN 978-3-659-79455-1
    • Titel Improving dependency parsing using word clusters
    • Autor Jostein Lien
    • Herausgeber LAP LAMBERT Academic Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470