Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

CHF 124.80
Auf Lager
SKU
5IKPHAUUP48
Stock 1 Verfügbar
Geliefert zwischen Fr., 07.11.2025 und Mo., 10.11.2025

Details

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space.

Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved.

The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.


Nominated by the University of California, Irvine, USA, as an outstanding Ph.D. thesis Presents data sets that reduce false rain signals in satellite precipitation measurements Provides advances in the accuracy of satellite-based precipitation estimation Includes supplementary material: sn.pub/extras

Inhalt
Introduction to the Current States of Satellite Precipitation Products.- False Alarm in Satellite Precipitation Data.- Satellite Observations.- Reducing False Rain in Satellite Precipitation Products Using CloudSat Cloud Classification Maps and MODIS Multi-Spectral Images.- Integration of CloudSat Precipitation Profile in Reduction of False Rain.- Cloud Classification and its Application in Reducing False Rain.- Summary and Conclusions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319363325
    • Anzahl Seiten 68
    • Lesemotiv Verstehen
    • Genre Earth Science
    • Auflage Softcover reprint of the original 1st ed. 2015
    • Herausgeber Springer, Berlin
    • Gewicht 1533g
    • Größe H235mm x B155mm
    • Jahr 2016
    • EAN 9783319363325
    • Format Kartonierter Einband
    • ISBN 978-3-319-36332-5
    • Veröffentlichung 10.09.2016
    • Titel Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery
    • Autor Nasrin Nasrollahi
    • Untertitel Springer Theses
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470