Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Inference for Heavy-Tailed Data
Details
Heavy tailed data appears frequently in social science, internet traffic, insurance and finance. Statistical inference has been studied for many years, which includes recent bias-reduction estimation for tail index and high quantiles with applications in risk management, empirical likelihood based interval estimation for tail index and high quantiles, hypothesis tests for heavy tails, the choice of sample fraction in tail index and high quantile inference. These results for independent data, dependent data, linear time series and nonlinear time series are scattered in different statistics journals. Inference for Heavy-Tailed Data Analysis puts these methods into a single place with a clear picture on learning and using these techniques.
Autorentext
Dr Liang Peng is based at the Department of Risk Management and Insurance at Robinson College of Business, Georgia State University, USA
Inhalt
- Independent Data: bias-corrected estimators, interval estimation, hypothesis tests, choice of sample fraction2. Dependent Data: inference for mixing data, ARMA models, GARCH(1,1) models3. Multivariate Regular Variation: Recent research on hidden regular variation, functional time series.4. Applications: a tool-box in R will be applied to analyse data sets in insurance and finance
Weitere Informationen
- Allgemeine Informationen
- GTIN 09780128046760
- Genre Maths
- Herausgeber Elsevier Science & Technology
- Größe H229mm x B152mm x T11mm
- Jahr 2017
- EAN 9780128046760
- Format Kartonierter Einband
- ISBN 978-0-12-804676-0
- Veröffentlichung 01.09.2017
- Titel Inference for Heavy-Tailed Data
- Autor Liang Peng , Yongcheng Qi
- Untertitel Applications in Insurance and Finance
- Gewicht 300g
- Sprache Englisch