Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Integer Optimization Techniques
Details
There is a variety of method for solving classification problem in different disciplines. Some of these methods include Neural Networks (NN), fuzzy logic, support vector machines (SVM), principal component analysis P(A), tolerant rough sets, linear programming.Finally, we would like to expand the applications of our methodologies. For example, we can extend the regression problem to those with linear constraints. There may be bounds on the value of the regression coefficients, and limitations on the changes in the regression coefficients in time-series regression . We would be able to use our general methodology to solve this combined subset selection and constrained regression problem. Also, we can clearly extend our methodologies to general quadratic mixed-integer optimization as well.
Autorentext
Dr.S.Shenbaga Ezhil is working as a Professor in the Department of Mathematics at Jeppiar Institute of Technology, Sriperumpudur, Chennai,India.She published more research papers.Mrs.B.K Jaleesha,working as a lecturer in St.Josephs Arts and Science College for women,Hosur.Mr.Rajababu is currently working as a lecturer in PT.Lee Engineering College.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 107g
- Autor S. Shenbaga Ezhil , B. K. Jaleesha , S. Rajababu
- Titel Integer Optimization Techniques
- Veröffentlichung 13.05.2020
- ISBN 6202529865
- Format Kartonierter Einband
- EAN 9786202529860
- Jahr 2020
- Größe H220mm x B150mm x T4mm
- Anzahl Seiten 60
- GTIN 09786202529860