Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Integral Operators in Non-Standard Function Spaces
Details
This book, the result of the authors' long and fruitful collaboration, focuses on integral operators in new, non-standard function spaces and presents a systematic study of the boundedness and compactness properties of basic, harmonic analysis integral operators in the following function spaces, among others: variable exponent Lebesgue and amalgam spaces, variable Hölder spaces, variable exponent Campanato, Morrey and Herz spaces, Iwaniec-Sbordone (grand Lebesgue) spaces, grand variable exponent Lebesgue spaces unifying the two spaces mentioned above, grand Morrey spaces, generalized grand Morrey spaces, and weighted analogues of some of them.
The results obtained are widely applied to non-linear PDEs, singular integrals and PDO theory. One of the book's most distinctive features is that the majority of the statements proved here are in the form of criteria.
The book is intended for a broad audience, ranging from researchers in the area to experts in applied mathematicsand prospective students.
Presents the first comprehensive account of the two-weight theory of basic integral operators, developed in variable exponent Lebesgue spaces Provides the complete characterizations of Riesz potentials (of functions in variable Lebesgue spaces), weights and space exponents Explores the weak and strong type estimates criteria for fractional and singular integrals Introduces new function spaces that unify variable exponent Lebesgue spaces and grand Lebesgue spaces
Inhalt
Preface.- I: Variable Exponent Lebesgue and Amalgam spaces.- 1 Hardy Type Operators.- 2 Oscillating weights.- 3 Kernel Integral Operators.- 4 Two-Weight Estimates.- 5 One-sided Operators.- 6 Two-weight Inequalities for Fractional Maximal Functions.- 7 Hypersingular Integrals.- 8 Description of the Range of Potentials 213.- 9 More on Compactness.- 10 Applications to Singular Integral Equations.- II: Hölder Spaces of Variable Order.- 11 Variable Order Hölder Spaces.- III: Variable Exponent Morrey-Campanato and Herz Spaces.- 12 Morrey Type Spaces; Constant Exponents.- 13 Morrey Type Spaces; Variable Exponents.- Bibliography.- Symbol Index.- Subject Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319210148
- Sprache Englisch
- Auflage 1st edition 2016
- Größe H241mm x B160mm x T37mm
- Jahr 2016
- EAN 9783319210148
- Format Fester Einband
- ISBN 3319210149
- Veröffentlichung 20.05.2016
- Titel Integral Operators in Non-Standard Function Spaces
- Autor Vakhtang Kokilashvili , Stefan Samko , Humberto Rafeiro , Alexander Meskhi
- Untertitel Volume 1: Variable Exponent Lebesgue and Amalgam Spaces
- Gewicht 1039g
- Herausgeber Springer International Publishing
- Anzahl Seiten 588
- Lesemotiv Verstehen
- Genre Mathematik