Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Introducing Molecular Electronics
Details
Klaus von Klitzing Max-Planck-Institut fur ¨ Festk¨ orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany Already many Cassandras have prematurely announced the end of the silicon roadmap and yet, conventional semiconductor-based transistors have been continuously shrinking at a pace which has brought us to nowadays cheap and powerful microelectronics. However it is clear that the traditional scaling laws cannot be applied if unwanted tunnel phenomena or ballistic transport dominate the device properties. It is generally expected, that a combination of silicon CMOS devices with molecular structure will dominate the ?eld of nanoelectronics in 20 years. The visionary ideas of atomic- or molecular-scale electronics already date back thirty years but only recently advanced nanotechnology, including e.g. scanning tunneling methods and mechanically controllable break junctions, have enabled to make distinct progress in this direction. On the level of f- damentalresearch,stateofthearttechniquesallowtomanipulate,imageand probechargetransportthroughuni-molecularsystemsinanincreasinglyc- trolled way. Hence, molecular electronics is reaching a stage of trustable and reproducible experiments. This has lead to a variety of physical and chemical phenomena recently observed for charge currents owing through molecular junctions, posing new challenges to theory. As a result a still increasing n- ber of open questions determines the future agenda in this ?eld.
Features basic knowledge of both theory and experiment Includes supplementary material: sn.pub/extras
Klappentext
This volume presents a summary of our current understanding of molecular electronics combined with selected state-of-the-art results at a level accessible to the advanced undergraduate or novice postgraduate. This single book comprises the basic knowledge of both theory and experiment underpinning this rapidly growing field. Concepts and techniques such as density functional theory and charge transport, break junctions and scanning probe microscopy are introduced step-by-step and are subsequently used in specific examples. The text addresses a wide range of systems including molecular junctions made of single-molecules, self-assembled monolayers, carbon nanotubes and DNA.
Inhalt
Theory.- Foundations of Molecular Electronics Charge Transport in Molecular Conduction Junctions.- AC-Driven Transport Through Molecular Wires.- Electronic Structure Calculations for Nanomolecular Systems.- Ab-initio Non-Equilibrium Green's Function Formalism for Calculating Electron Transport in Molecular Devices.- Tight-Binding DFT for Molecular Electronics (gDFTB).- Current-Induced Effects in Nanoscale Conductors.- Single Electron Tunneling in Small Molecules.- Transport through Intrinsic Quantum Dots in Interacting Carbon Nanotubes.- Introducing Molecular Electronics: A Brief Overview.- Introducing Molecular Electronics: A Brief Overview.- Experiment.- Contacting Individual Molecules Using Mechanically Controllable Break Junctions.- Intrinsic Electronic Conduction Mechanisms in Self-Assembled Monolayers.- Making Contacts to Single Molecules: Are We There Yet?.- Six Unimolecular Rectifiers and What Lies Ahead.- Quantum Transport in Carbon Nanotubes.- Carbon Nanotube Electronics and Optoelectronics.- Charge Transport in DNA-based Devices.- Outlook.- CMOL: Devices, Circuits, and Architectures.- Architectures and Simulations for Nanoprocessor Systems Integrated on the Molecular Scale.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Anzahl Seiten 540
- Herausgeber Springer
- Gewicht 809g
- Untertitel Lecture Notes in Physics 680
- Titel Introducing Molecular Electronics
- Veröffentlichung 22.10.2010
- ISBN 3642066283
- Format Kartonierter Einband
- EAN 9783642066283
- Jahr 2010
- Größe H235mm x B155mm x T29mm
- Lesemotiv Verstehen
- Editor Gianaurelio Cuniberti, Giorgos Fagas, Klaus Richter
- GTIN 09783642066283