Introduction to the Theory of Singular Integral Operators with Shift

CHF 103.95
Auf Lager
SKU
NSA7F1NSNNL
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

problem (0. 2) was the same u that of problem (0. 1). Incidentally, later on Mandzhavidze and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0. 2) to problem (0. 1) with the help of conformal mappings. Apparenlly, the first paper in which SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that the equation (0. 3) where (1; C(f), 5 is the operator of 'ingular integration with a Cauchy kernel (Srp)(!) "" (". i)-I fr(T - t)-lrp(T)dT, W is the shift operator (WrpHt) = rp{a(t", in the case 01 = - (13,0, = 0. , could be reduced to problem (0. 2). We note thai, in problem (0. 2), the shift ott) need not be a Carlemao shift, . ei. , it is oot necessary that a . . (t) :::: t for some integer 11 ~ 2, where ai(l) "" o(ok_dt)), 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 appeared in BPAFS theory in connection with the study of the problem (0. 4) by Carle man (2) who, in particular, showed that problem (0. 4) Wall a natural generalization of the problem on the existence of an a. utomorphic function belonging to a certain group of Fucs. Thus, the paper by Vckua (2) is also the fint paper in which a singular integral equation with a non·Carieman 5hifl is on c sidered.

Inhalt

  1. Background information.- 2.Noetherity criterion and a formula for the index of a singular integral functional operator of first order in the continuous case.- 3. The Noether theory of a singular integral functional operator of finite order in the continuous case.- 4. The Noether theory of singular integral functional operators with continuous coefficients on a non-closed contour.- 5. The Noether theory in algebras of singular integral functional operators.- References.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789401045155
    • Sprache Englisch
    • Größe H240mm x B160mm x T17mm
    • Jahr 2012
    • EAN 9789401045155
    • Format Kartonierter Einband
    • ISBN 9401045151
    • Veröffentlichung 24.12.2012
    • Titel Introduction to the Theory of Singular Integral Operators with Shift
    • Autor Viktor G. Kravchenko , Georgii S. Litvinchuk
    • Untertitel Mathematics and Its Applications 289
    • Gewicht 495g
    • Herausgeber Springer
    • Anzahl Seiten 308
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470