Invariant Differential Pairings

CHF 84.15
Auf Lager
SKU
542JBCGG1KR
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

Invariant differential operators appear often in mathematics and theoretical physics. The word invariant indicates that the operator in question contains some symmetry. The discovery and exploitation of these symmetries form an important part of research in these areas. Physical theories often require that the equations by which they are defined exhibit natural symmetries. This work is concerned with the extension of the study of invariant linear differential operators to bilinear differential pairings. This analysis is carried out for a wide class of geometric settings called parabolic geometries, examples of which are given by conformal geometry, CR geometry and projective geometry. We introduce the concept with a combination of differential geometric methods and representation theory. Various techniques such as jet bundles and tractor calculus are carefully explained. Supported by many concrete examples our exhibition is aimed at both mathematicians and physicists with an interest in the geometric analysis of partial differential equations.

Autorentext

Jens Kroeske, PhD: Studied Pure Mathematics at the University of Adelaide. Mathematician at ThinkTank Maths, Edinburgh.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639190823
    • Sprache Englisch
    • Größe H220mm x B150mm x T10mm
    • Jahr 2009
    • EAN 9783639190823
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-19082-3
    • Titel Invariant Differential Pairings
    • Autor Jens Kroeske
    • Untertitel A Study of Bilinear Symmetries for Parabolic Geometries
    • Gewicht 272g
    • Herausgeber VDM Verlag
    • Anzahl Seiten 172
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470