Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Iterative Approximation of Fixed Points
Details
The aim of this monograph is to give a unified introductory treatment of the most important iterative methods for constructing fixed points of nonlinear contractive type mappings. It summarizes the most significant contributions in the area by presenting, for each iterative method considered (Picard iteration, Krasnoselskij iteration, Mann iteration, Ishikawa iteration etc.), some of the most relevant, interesting, representative and actual convergence theorems. Applications to the solution of nonlinear operator equations as well as the appropriate error analysis of the main iterative methods, are also presented. Due to the explosive number of research papers on the topic (in the last 15 years only, more than one thousand articles related to the subject were published), it was felt that such a monograph was imperatively necessary. The volume is useful for authors, editors, and reviewers. It introduces concrete criteria for evaluating and judging the plethora of published papers.
Includes supplementary material: sn.pub/extras
Inhalt
Pre-Requisites of Fixed Points.- The Picard Iteration.- The Krasnoselskij Iteration.- The Mann Iteration.- The Ishikawa Iteration.- Other Fixed Point Iteration Procedures.- Stability of Fixed Point Iteration Procedures.- Iterative Solution of Nonlinear Operator Equations.- Error Analysis of Fixed Point Iteration Procedures.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783540722335
- Sprache Englisch
- Auflage 2nd revidierte and enlarged edition 2007
- Größe H235mm x B155mm x T19mm
- Jahr 2007
- EAN 9783540722335
- Format Kartonierter Einband
- ISBN 3540722335
- Veröffentlichung 16.05.2007
- Titel Iterative Approximation of Fixed Points
- Autor Vasile Berinde
- Untertitel Lecture Notes in Mathematics 1912
- Gewicht 522g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 344
- Lesemotiv Verstehen
- Genre Mathematik