Kernel-based Data Fusion for Machine Learning

CHF 229.05
Auf Lager
SKU
1P2C28KHB7U
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Data fusion problems arise in many different fields. This book provides a specific introduction to solve data fusion problems using support vector machines. The reader will require a good knowledge of data mining, machine learning and linear algebra.

Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.

Recent research on Kernel-based Data Fusion for Machine Learning Presents methods and applications in bioinformatics and text mining Written by leading experts in the field

Inhalt
Introduction.- Rayleigh quotient-type problems in machine learning.- Ln-norm Multiple Kernel Learning and Least Squares Support VectorMachines.- Optimized data fusion for kernel k-means Clustering.- Multi-view text mining for disease gene prioritization and clustering.- Optimized data fusion for k-means Laplacian Clustering.- Weighted Multiple Kernel Canonical Correlation.- Cross-species candidate gene prioritization with MerKator.- Conclusion.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642267512
    • Auflage 2011
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T13mm
    • Jahr 2013
    • EAN 9783642267512
    • Format Kartonierter Einband
    • ISBN 3642267513
    • Veröffentlichung 21.04.2013
    • Titel Kernel-based Data Fusion for Machine Learning
    • Autor Shi Yu , Yves Moreau , Bart Moor , Léon-Charles Tranchevent
    • Untertitel Methods and Applications in Bioinformatics and Text Mining
    • Gewicht 353g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 228

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470