Knowledge Science, Engineering and Management

CHF 165.15
Auf Lager
SKU
HALICFU5N3E
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

The three-volume sets constitute the refereed proceedings of the 15th International Conference on Knowledge Science, Engineering and Management, KSEM 2022, held in Singapore, during August 68, 2022.
The 169 full papers presented in these proceedings were carefully reviewed and selected from 498 submissions. The papers are organized in the following topical sections:
Volume I:Knowledge Science with Learning and AI (KSLA)
Volume II:Knowledge Engineering Research and Applications (KERA)
Volume III:Knowledge Management with Optimization and Security (KMOS)

Inhalt
Knowledge Management with Optimization and Security (KMOS).- Study on Chinese Named Entity Recognition Based on Dynamic Fusion and Adversarial Training.- Spatial Semantic Learning for Travel Time Estimation.- A Fine-Grained Approach for Vulnerabilities Discovery using Augmented Vulnerability Signatures.- PPBR-FL: a Privacy-preserving and Byzantine-robust Federated Learning System.- GAN-Based Fusion Adversarial Training.- MAST-NER: A Low-Resource Named Entity Recognition Method based on Trigger Pool.- Fuzzy information measures feature selection using descriptive statistics data.- Prompt-Based Self-Training Framework for Few-Shot Named Entity Recognition.- Learning Advisor-Advisee Relationship from Multiplex Network Structure.- CorefDRE: Coref-aware Document-level Relation Extraction.- Single Pollutant Prediction Approach by Fusing MLSTM and CNN.- A Multi-objective Evolutionary Algorithm Based on Multi-layer Network Reduction for Community Detection.- Detection DDoS of attacks based on federated learning with Digital Twin Network.- A Privacy-Preserving Subgraph-Level Federated Graph Neural Network via Differential Privacy.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031109881
    • Genre Information Technology
    • Auflage 1st edition 2022
    • Editor Gerard Memmi, Baijian Yang, Meikang Qiu, Tianwei Zhang, Linghe Kong
    • Lesemotiv Verstehen
    • Anzahl Seiten 772
    • Größe H235mm x B155mm x T42mm
    • Jahr 2022
    • EAN 9783031109881
    • Format Kartonierter Einband
    • ISBN 3031109880
    • Veröffentlichung 31.07.2022
    • Titel Knowledge Science, Engineering and Management
    • Untertitel 15th International Conference, KSEM 2022, Singapore, August 6-8, 2022, Proceedings, Part III
    • Gewicht 1147g
    • Herausgeber Springer International Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470