Kolmogorov Operators and Their Applications

CHF 268.85
Auf Lager
SKU
R6PM3PU96AP
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

Kolmogorov equations are a fundamental bridge between the theory of partial differential equations and that of stochastic differential equations that arise in several research fields.

This volume collects a selection of the talks given at the Cortona meeting by experts in both fields, who presented the most recent developments of the theory. Particular emphasis has been given to degenerate partial differential equations, Itô processes, applications to kinetic theory and to finance.

Provides a comprehensive state of the art of the field of hypoelliptic second order evolution equations Covers a vast array of special topics and applications illustrating the wide use of Kolmogorv equations Includes in-depth discussions on Kinetic theory

Autorentext
Stéphane Menozzi is Full Professor at Université d'Évry Val d'Essonne-Paris Saclay. His research concerns degenerate and/or singular Stochastic Differential Equations, regularity, heat-kernel estimates, approximation. Those equations can be viewed as the probabilistic counterpart to the corresponding Kolmogorov operators.

Andrea Pascucci is Full Professor of Probability and Statistics at the Alma Mater Studiorum - Università di Bologna. His expertise lies in Stochastic Partial Differential Equations, particularly of degenerate parabolic type. He has contributed to the field, focusing on applications in mathematical finance, including American options, Asian/path-dependent options, and volatility modeling.

Sergio Polidoro is Full professor of Mathematical Analysis at the University of Modena and Reggio Emilia. His research activity mainly concerns regularity theory for second order partial differential equations with non-negative characteristic form. His main contributions in this field are regularity results and heat-kernel estimates for degenerate Kolmogorov equations.


Inhalt

Chapter 1. Local Regularity for the Landau Equation (with Coulomb Interaction Potential).- Chapter 2. L 2 Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states.- Chapter 3. New Perspectives on recent trends for Kolmogorov operators.- Chapter 4. Schauder estimates for Kolmogorov-Fokker-Planck operators with coefficients measurable in time and Holder continuous in space.-Chapter 5. A new proof of the geometric Soboleva embedding for generalised Kolmogorov operators.- Chapter 6. Intrinsic Taylor formula for non-homogeneous Kolmogorov-type Lie groups.- Chapter 7. Form-boundedness and sdes with singular drift.- Chapter 8. About the regularity of degenerate non-local Kolmogorov operators under diffusive perturbations.- Chapter 9. Integration by parts formula for exit times of one dimensional diffusions.- Chapter 10. On averaged control and iteration improvement for a class of multidimensional ergodicdiffusions.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789819702244
    • Lesemotiv Verstehen
    • Genre Maths
    • Editor Stéphane Menozzi, Andrea Pascucci, Sergio Polidoro
    • Anzahl Seiten 360
    • Herausgeber Springer
    • Größe H241mm x B160mm x T25mm
    • Jahr 2024
    • EAN 9789819702244
    • Format Fester Einband
    • ISBN 9819702240
    • Veröffentlichung 30.05.2024
    • Titel Kolmogorov Operators and Their Applications
    • Untertitel Springer INdAM Series 56
    • Gewicht 705g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470