Korteweg de Vries equation

CHF 37.25
Auf Lager
SKU
JKPVN9FAKF4
Stock 1 Verfügbar
Geliefert zwischen Do., 22.01.2026 und Fr., 23.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, the Korteweg de Vries equation (KdV equation for short) is a mathematical model of waves on shallow water surfaces. It is particularly notable as the prototypical example of an exactly solvable model, that is, a non-linear partial differential equation whose solutions can be exactly and precisely specified. The solutions in turn include prototypical examples of solitons. KdV can be solved by means of the inverse scattering transform. The mathematical theory behind the KdV equation is rich and interesting, and, in the broad sense, is a topic of active mathematical research. The equation is named for Diederik Korteweg and Gustav de Vries who studied it in (Korteweg & de Vries 1895), though the equation first appears in (Boussinesq 1877, p. 360). It is an equation of Painlevé type.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131611148
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • EAN 9786131611148
    • Format Fachbuch
    • Titel Korteweg de Vries equation
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 68
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470