Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Labeling Problems with Smoothness-Based Priors in Computer Vision
Details
Many applications in computer vision can be formulated as labeling problems of assigning each pixel a label where the labels represent some local quantities. To improve results of these labeling problems, smoothness-based priors can be enforced in the formulations.Such labeling problems with smoothness-based priors can be solved by minimizing a Markov energy. According to different definitions of the energy functions, different optimization tools can be used to obtain the results. In this book, three optimization approaches are used due to their good performance: graph cuts, belief propagation, and optimization with a closed form solution. Five algorithms in different applications are proposed in this book. All of them are formulated as smoothness based labeling problems, including single image segmentation, video object cutout, image/video completion, image denoising, and image matting. This book should be especially useful to professionals in computer vision fields.
Autorentext
Shifeng Chen, PhD: Studied Information Engineering at The Chinese University of Hong Kong, China. Research assistant professor at Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, China.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783843376426
- Sprache Englisch
- Größe H220mm x B150mm x T10mm
- Jahr 2010
- EAN 9783843376426
- Format Kartonierter Einband
- ISBN 3843376425
- Veröffentlichung 21.11.2010
- Titel Labeling Problems with Smoothness-Based Priors in Computer Vision
- Autor Shifeng Chen
- Untertitel Formulations, Optimizations and Applications
- Gewicht 250g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 156
- Genre Informatik