Language Identification Using Spectral and Prosodic Features

CHF 79.15
Auf Lager
SKU
7TBFBGJ7NOP
Stock 1 Verfügbar
Geliefert zwischen Mi., 12.11.2025 und Do., 13.11.2025

Details

This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desired models to enhance the performance of LID systems.

Discusses recently proposed spectral features extracted from glottal closure regions and pitch-synchronous analysis, which are more robust and carry high degree of language discrimination information Proposes robust methods for extracting the spectral features from glottal closure regions and pitch-synchronous analysis Investigates spectral features for language identification tasks in noisy background environments Includes supplementary material: sn.pub/extras

Inhalt
Introduction.- Literature Review.- Language Identification using Spectral Features.- Language Identification using Prosodic Features.- Summary and Conclusions.- Appendix A: LPCC Features.- Appendix B: MFCC Features.- Appendix C: Gaussian Mixture Model (GMM).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319171623
    • Genre Elektrotechnik
    • Auflage 2015
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 112
    • Größe H235mm x B155mm x T7mm
    • Jahr 2015
    • EAN 9783319171623
    • Format Kartonierter Einband
    • ISBN 3319171623
    • Veröffentlichung 09.04.2015
    • Titel Language Identification Using Spectral and Prosodic Features
    • Autor K. Sreenivasa Rao , Sudhamay Maity , V. Ramu Reddy
    • Untertitel SpringerBriefs in Speech Technology
    • Gewicht 184g
    • Herausgeber Springer International Publishing

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470