Lattices and Ordered Sets
Details
This user-friendly book is intended to be a thorough introduction to the subject of ordered sets and lattices, with an emphasis on the latter. The presentation is lucid and the book contains a plethora of exercises, examples, and illustrations.
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Written in an appealing style Will become a standard text and an invaluable guide Contains a plethora of exercises, examples, and illustrations
Autorentext
Steven Roman, Ph.D., is a professor emeritus of mathematics at the California State University, Fullerton. His previous books with O'Reilly include Access Database Design and Programming, Writing Excel Macros, and Win32 API Programming with Visual Basic.
Zusammenfassung
Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on?
Inhalt
Basic Theory.- Partially Ordered Sets.- Well-Ordered Sets.- Lattices.- Modular and Distributive Lattices.- Boolean Algebras.- The Representation of Distributive Lattices.- Algebraic Lattices.- Prime and Maximal Ideals; Separation Theorems.- Congruence Relations on Lattices.- Topics.- Duality for Distributive Lattices: The Priestley Topology.- Free Lattices.- Fixed-Point Theorems.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441927040
- Sprache Englisch
- Auflage Softcover reprint of hardcover 1st ed. 2009
- Genre Mathematik
- Größe H233mm x B154mm x T19mm
- Jahr 2010
- EAN 9781441927040
- Format Kartonierter Einband
- ISBN 978-1-4419-2704-0
- Veröffentlichung 29.10.2010
- Titel Lattices and Ordered Sets
- Autor Steven Roman
- Gewicht 470g
- Herausgeber Palgrave MacMillan UK
- Anzahl Seiten 305
- Lesemotiv Verstehen