Learning in Cooperative Multi-Agent Systems

CHF 97.55
Auf Lager
SKU
3BU1IO6FBV6
Stock 1 Verfügbar
Geliefert zwischen Do., 15.01.2026 und Fr., 16.01.2026

Details

In a distributed system, a number of individually acting agents coexist. In order to achieve a common goal, coordinated cooperation between the agents is crucial. Many real-world applications are well-suited to be formulated in terms of spatially or functionally distributed entities. Job-shop scheduling represents one such application. Multi-agent reinforcement learning (RL) methods allow for automatically acquiring cooperative policies based solely on a specification of the desired joint behavior of the whole system. However, the decentralization of the control and observation of the system among independent agents has a significant impact on problem complexity. The author Thomas Gabel addresses the intricacy of learning and acting in multi-agent systems by two complementary approaches. He identifies a subclass of general decentralized decision-making problems that features provably reduced complexity. Moreover, he presents various novel model-free multi-agent RL algorithms that are capable of quickly obtaining approximate solutions in the vicinity of the optimum. All algorithms proposed are evaluated in the scope of various established scheduling benchmark problems.

Autorentext

Thomas Gabel, Dr. rer. nat., studied Computer Scienceat the University of Kaiserslautern. Subsequently, hewas working as scientific researcher at the University of Osnabrück with focus on learning in multi-agent systems, reinforcement learning, as well as knowledge management and case-based reasoning. He received his doctoral degree in 2009.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783838110363
    • Genre Sonstige Informatikbücher
    • Sprache Deutsch
    • Anzahl Seiten 192
    • Größe H220mm x B150mm x T13mm
    • Jahr 2017
    • EAN 9783838110363
    • Format Kartonierter Einband
    • ISBN 978-3-8381-1036-3
    • Veröffentlichung 29.05.2017
    • Titel Learning in Cooperative Multi-Agent Systems
    • Autor Thomas Gabel
    • Untertitel Distributed Reinforcement Learning Algorithms and their Application to Scheduling Problems
    • Gewicht 304g
    • Herausgeber Südwestdeutscher Verlag für Hochschulschriften AG Co. KG

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470