Limit Theorems for Some Long Range Random Walks on Torsion Free Nilpotent Groups

CHF 64.70
Auf Lager
SKU
HON0F9MLV70
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book develops limit theorems for a natural class of long range random walks on finitely generated torsion free nilpotent groups. The limits in these limit theorems are Lévy processes on some simply connected nilpotent Lie groups. Both the limit Lévy process and the limit Lie group carrying this process are determined by and depend on the law of the original random walk. The book offers the first systematic study of such limit theorems involving stable-like random walks and stable limit Lévy processes in the context of (non-commutative) nilpotent groups.


Provides a systematic study of functional limit theorem for long-jump random walks on nilpotent groups Gives a companion local limit theorem relating the densities of of the associated processes Presents a new constructive characterization of symmetric Lévy processes on nilpotent groups

Autorentext

Zhen-Qing Chen is a Professor of Mathematics at the University of Washington, Seattle, Washington, USA
Takashi Kumagai is a Professor of Mathematics at Waseda University, Tokyo, Japan.
Laurent Saloff-Coste is the Abram R. Bullis Professor of Mathematics at Cornell University, Ithaca, New York, USA.
Jian Wang is a Professor of Mathematics at Fujian Normal University, Fuzhou, Fujian Province, P.R. China
Tianyi Zheng is a Professor of Mathematics at the University of California, San Diego, California, USA



Inhalt
Setting the stage.- Introduction.- Polynomial coordinates and approximate dilations.- Vague convergence and change of group law.- Weak convergence of the processes.- Local limit theorem.- Symmetric Lévy processes on nilpotent groups.- Measures in SM() and their geometries.- Adapted approximate group dilations.- The main results for random walks driven by measures in SM().

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031433313
    • Lesemotiv Verstehen
    • Genre Maths
    • Anzahl Seiten 156
    • Herausgeber Springer
    • Größe H235mm x B155mm x T9mm
    • Jahr 2023
    • EAN 9783031433313
    • Format Kartonierter Einband
    • ISBN 3031433319
    • Veröffentlichung 25.10.2023
    • Titel Limit Theorems for Some Long Range Random Walks on Torsion Free Nilpotent Groups
    • Autor Zhen-Qing Chen , Takashi Kumagai , Laurent Saloff-Coste , Jian Wang , Tianyi Zheng
    • Untertitel SpringerBriefs in Mathematics
    • Gewicht 248g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470