Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Linear and Quasilinear Parabolic Problems
Details
This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets.
It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.
The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant in the realm of stochastic differential equations, for example.
Follows the steps of Vol. I "Abstract Linear Theory" Features a clear and rigorous presentation style Fills a gap in literature
Inhalt
Restriction-Extension Pairs.- Sequence Spaces.- Anisotropy.- Classical Spaces.- Besov Spaces.- Intrinsic Norms, Slobodeckii and Hölder Spaces.- Bessel Potential Spaces.- Triebel-Lizorkin Spaces.- Point-Wise Multiplications.- Compactness.- Parameter-Dependent Spaces.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030117627
- Sprache Englisch
- Auflage 1st edition 2019
- Größe H241mm x B160mm x T32mm
- Jahr 2019
- EAN 9783030117627
- Format Fester Einband
- ISBN 3030117626
- Veröffentlichung 01.05.2019
- Titel Linear and Quasilinear Parabolic Problems
- Autor Herbert Amann
- Untertitel Volume II: Function Spaces
- Gewicht 881g
- Herausgeber Springer International Publishing
- Anzahl Seiten 480
- Lesemotiv Verstehen
- Genre Mathematik