Linear Network Error Correction Coding

CHF 67.15
Auf Lager
SKU
7RORODAE11V
Stock 1 Verfügbar
Geliefert zwischen Mo., 10.11.2025 und Di., 11.11.2025

Details

There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences similar to algebraic coding, and also briefly discuss the main results following the other approach, that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances and weights are defined in order to characterize the discrepancy of these two vectors and to measure the seriousness of errors. Similar to classical error-correcting codes, the authors also apply the minimum distance decoding principle to LNEC codes at each sink node, but use distinct distances. For this decoding principle, it is shown that the minimum distance of a LNEC code at each sink node can fully characterize its error-detecting, error-correcting and erasure-error-correcting capabilities with respect to the sink node. In addition, some important and useful coding bounds in classical coding theory are generalized to linear network error correction coding, including the Hamming bound, the Gilbert-Varshamov bound and the Singleton bound. Several constructive algorithms of LNEC codes are presented, particularly for LNEC MDS codes, along with an analysis of their performance. Random linear network error correction coding is feasible for noncoherent networks with errors. Its performance is investigated by estimating upper bounds on some failure probabilities by analyzing the information transmission and error correction. Finally, the basic theory of subspace codes is introduced including the encoding and decoding principle as well as the channel model, the bounds on subspace codes, code construction and decoding algorithms.

Includes supplementary material: sn.pub/extras

Inhalt

Introduction.- Network Error Correction Model.- Another Description of Linear Network Error Correction Model.- Coding Bounds of Linear Network Error Correction Codes.- Random Linear Network Error Correction Coding.- Subspace Codes.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781493905874
    • Anzahl Seiten 116
    • Lesemotiv Verstehen
    • Genre Allgemein & Lexika
    • Auflage 2014
    • Herausgeber Springer New York
    • Gewicht 189g
    • Untertitel SpringerBriefs in Computer Science
    • Größe H235mm x B155mm x T7mm
    • Jahr 2014
    • EAN 9781493905874
    • Format Kartonierter Einband
    • ISBN 1493905872
    • Veröffentlichung 22.03.2014
    • Titel Linear Network Error Correction Coding
    • Autor Zhen Zhang , Xuan Guang
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470