Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Linear Regression
Details
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models.
This text is for graduates and undergraduates with a strong mathematical background. The prerequisites for this text are linear algebra and a calculus based course in statistics.
R functions are available for download from author's website Includes an extensive bibliography Problems are provided at the end of every chapter Includes supplementary material: sn.pub/extras
Autorentext
David Olive is a Professor at Southern Illinois University, Carbondale, IL, USA. His research interests include the development of computationally practical robust multivariate location and dispersion estimators, robust multiple linear regression estimators, and resistant dimension reduction estimators.
Inhalt
Introduction.- Multiple Linear Regression.- Building an MLR Model.- WLS and Generalized Least Squares.- One Way Anova.- The K Way Anova Model.- Block Designs.- Orthogonal Designs.- More on Experimental Designs.- Multivariate Models.- Theory for Linear Models.- Multivariate Linear Regression.- GLMs and GAMs.- Stuff for Students.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319552507
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2017
- Anzahl Seiten 508
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T33mm
- Jahr 2017
- EAN 9783319552507
- Format Fester Einband
- ISBN 3319552503
- Veröffentlichung 25.04.2017
- Titel Linear Regression
- Autor David J. Olive
- Gewicht 922g
- Sprache Englisch