Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Local Invariant Features for 3D Image Analysis
Details
In this thesis, we present a novel framework which provides generic methods for the automatic analysis of 3D volume data. We combine local invariant feature descriptors with learning techniques to infer mathematical models describing 3D objects (structures) in dense and cluttered data. Using annotated training examples, our overall framework is able to adapt to a wide range of different problems by learning local formations of shape and texture properties. Local feature descriptors play the key role in our concept. Due to the oftentimes high intra class variations and anisotropic nature of the data, we derive features that are invariant towards the most common data transformations, including rotation, gray-scale changes and for some applications also scaling and translation. Throughout this thesis, we provide as many as 14 different local 3D features: from general texture and shape features to very specific and highly specialized detectors
Autorentext
Janis Fehr is a postdoctoral researcher at the HeidelbergCollaboratory for Image Processing (HCI). His research interestsinclude invariant/robust feature design, biomedical imageanalysis and machine learning.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838110837
- Sprache Deutsch
- Genre Sonstige Technikbücher
- Größe H220mm x B150mm x T17mm
- Jahr 2015
- EAN 9783838110837
- Format Kartonierter Einband
- ISBN 978-3-8381-1083-7
- Veröffentlichung 28.09.2015
- Titel Local Invariant Features for 3D Image Analysis
- Autor Janis Fehr
- Untertitel Dissertation
- Gewicht 411g
- Herausgeber Südwestdeutscher Verlag für Hochschulschriften AG Co. KG
- Anzahl Seiten 264