Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Low-Rank and Sparse Modeling for Visual Analysis
Details
This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications.
Covers the most state-of-the-art topics of sparse and low-rank modeling Examines the theory of sparse and low-rank analysis to the real-world practice of sparse and low-rank analysis Contributions from top experts voicing their unique perspectives included throughout Includes supplementary material: sn.pub/extras
Autorentext
Yun Fu is an Assistant Professor, ECE and CS, Northeastern University
Inhalt
Nonlinearly Structured Low-Rank Approximation.- Latent Low-Rank Representation.- Scalable Low-Rank Representation.- Low-Rank and Sparse Dictionary Learning.- Low-Rank Transfer Learning.- Sparse Manifold Subspace Learning.- Low Rank Tensor Manifold Learning.- Low-Rank and Sparse Multi-Task Learning.- Low-Rank Outlier Detection.- Low-Rank Online Metric Learning.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319119991
- Auflage 2014
- Editor Yun Fu
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H241mm x B160mm x T18mm
- Jahr 2014
- EAN 9783319119991
- Format Fester Einband
- ISBN 3319119990
- Veröffentlichung 19.11.2014
- Titel Low-Rank and Sparse Modeling for Visual Analysis
- Gewicht 535g
- Herausgeber Springer International Publishing
- Anzahl Seiten 244
- Lesemotiv Verstehen