Lp-Theory for Incompressible Newtonian Flows

CHF 82.35
Auf Lager
SKU
3GO504O9PPO
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This thesis is devoted to the study of the basic equations of fluid dynamics. First Matthias Köhne focuses on the derivation of a class of boundary conditions, which is based on energy estimates, and, thus, leads to physically relevant conditions. The derived class thereby contains many prominent artificial boundary conditions, which have proved to be suitable for direct numerical simulations involving artificial boundaries. The second part is devoted to the development of a complete Lp-theory for the resulting initial boundary value problems in bounded smooth domains, i.e. the Navier-Stokes equations complemented by one of the derived energy preserving boundary conditions. Finally, the third part of this thesis focuses on the corresponding theory for bounded, non-smooth domains, where the boundary of the domain is allowed to contain a finite number of edges, provided the smooth components of the boundary that meet at such an edge are locally orthogonal.


Publication in the field of technical sciences? Includes supplementary material: sn.pub/extras

Autorentext

Matthias Köhne earned a doctorate of Mathematics under the supervision of Prof. Dr. Dieter Bothe at the Department of Mathematics at TU Darmstadt, where his research was supported by the cluster of excellence ''Center of Smart Interfaces'' and the international research training group ''Mathematical Fluid Dynamics''.


Inhalt
Navier-Stokes Equations.- Energy Preserving Boundary Condition.- Weakly Singular Domain.- Maximal Lp-Regularity.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783658010515
    • Sprache Englisch
    • Auflage 2013
    • Größe H210mm x B148mm x T11mm
    • Jahr 2012
    • EAN 9783658010515
    • Format Kartonierter Einband
    • ISBN 3658010517
    • Veröffentlichung 06.12.2012
    • Titel Lp-Theory for Incompressible Newtonian Flows
    • Autor Matthias Köhne
    • Untertitel Energy Preserving Boundary Conditions, Weakly Singular Domains
    • Gewicht 261g
    • Herausgeber Springer Fachmedien Wiesbaden
    • Anzahl Seiten 196
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470