Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Lyapunov Exponents of Linear Cocycles
Details
The aim of this monograph is to present a general method of proving continuity of Lyapunov exponents of linear cocycles. The method uses an inductive procedure based on a general, geometric version of the Avalanche Principle. The main assumption required by this method is the availability of appropriate large deviation type estimates for quantities related to the iterates of the base and fiber dynamics associated with the linear cocycle. We establish such estimates for various models of random and quasi-periodic cocycles. Our method has its origins in a paper of M. Goldstein and W. Schlag. Our present work expands upon their approach in both depth and breadth. We conclude this monograph with a list of related open problems, some of which may be treated using a similar approach.
Unified approach to proving continuity of Lyapunov exponents for various types of linear cocycles Uniform large deviation type estimates established for iterates of general quasi-periodic and random cocycles A general Avalanche Principle for compositions of linear maps derived using a geometric approach A list of related open problems Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Estimates on Grassmann Manifolds.- Abstract Continuity of Lyapunov Exponents.- The Oseledets Filtration and Decomposition.- Large Deviations for Random Cocycles.- Large Deviations for Quasi-Periodic Cocycles.- Further Related Problems.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789462391239
- Sprache Englisch
- Auflage 2016
- Größe H241mm x B160mm x T21mm
- Jahr 2016
- EAN 9789462391239
- Format Fester Einband
- ISBN 9462391238
- Veröffentlichung 30.03.2016
- Titel Lyapunov Exponents of Linear Cocycles
- Autor Silvius Klein , Pedro Duarte
- Untertitel Continuity via Large Deviations
- Gewicht 588g
- Herausgeber Atlantis Press
- Anzahl Seiten 280
- Lesemotiv Verstehen
- Genre Mathematik