Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning and Data Mining for Sports Analytics
Details
This book constitutes the refereed post-conference proceedings of the 7th International Workshop on Machine Learning and Data Mining for Sports Analytics, MLSA 2020, colocated with ECML/PKDD 2020, in Ghent, Belgium, in September 2020. Due to the COVID-19 pandemic the conference was held online.
The 11 papers presented were carefully reviewed and selected from 22 submissions. The papers present a variety of topics within the area of sports analytics, including tactical analysis, outcome predictions, data acquisition, performance optimization, and player evaluation.
Inhalt
Routine Inspection: A playbook for corner kicks.- How data availability aects the ability to learngood xG models.- Low-cost optical tracking of soccer players.- An Autoencoder Based Approach to SimulateSports Games.- Physical performance optimization in football.- Predicting Player Trajectoriesin Shot Situations in Soccer.- Stats Aren't Everything: Learning Strengths andWeaknesses of Cricket Players.- Prediction of tiers in the rankingof ice hockey players.- A Machine Learning Approach for Road CyclingRace Performance Prediction.- Mining Marathon Training Data to GenerateUseful User Proles.- Learning from partially labeled sequences forbehavioral signal annotation.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030649111
- Editor Ulf Brefeld, Albrecht Zimmermann, Jan van Haaren, Jesse Davis
- Sprache Englisch
- Auflage 1st edition 2020
- Größe H235mm x B155mm x T9mm
- Jahr 2020
- EAN 9783030649111
- Format Kartonierter Einband
- ISBN 3030649113
- Veröffentlichung 10.12.2020
- Titel Machine Learning and Data Mining for Sports Analytics
- Untertitel 7th International Workshop, MLSA 2020, Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings
- Gewicht 242g
- Herausgeber Springer International Publishing
- Anzahl Seiten 152
- Lesemotiv Verstehen
- Genre Informatik