Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track

CHF 101.90
Auf Lager
SKU
79UPKQLL46M
Stock 1 Verfügbar
Geliefert zwischen Fr., 23.01.2026 und Mo., 26.01.2026

Details

This multi-volume set, LNAI 16013 to LNAI 16022, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2025, held in Porto, Portugal, September 1519, 2025. The 300 full papers presented here, together with 15 demo papers, were carefully reviewed and selected from 1253 submissions. The papers presented in these proceedings are from the following three conference tracks: The Research Track in Volume LNAI 16013-16020 refers about Anomaly & Outlier Detection, Bias & Fairness, Causality, Clustering, Data Challenges, Diffusion Models, Ensemble Learning, Graph Neural Networks, Graphs & Networks, Healthcare & Bioinformatics, Images & Computer Vision, Interpretability & Explainability, Large Language Models, Learning Theory, Multimodal Data, Neuro Symbolic Approaches, Optimization, Privacy & Security, Recommender Systems, Reinforcement Learning, Representation Learning, Resource Efficiency, Robustness & Uncertainty, Sequence Models, Streaming & Spatiotemporal Data, Text & Natural Language Processing, Time Series, and Transfer & Multitask Learning. The Applied Data Science Track in Volume LNAI 16020-16022 refers about Agriculture, Food and Earth Sciences, Education, Engineering and Technology, Finance, Economy, Management or Marketing, Health, Biology, Bioinformatics or Chemistry, Industry (4.0, 5.0, Manufacturing, ...), Smart Cities, Transportation and Utilities (e.g., Energy), Sports, and Web and Social Networks The Demo Track in LNAI 16022 showcased practical applications and prototypes, accepting 15 papers from a total of 30 submissions. These proceedings cover the papers accepted in the research and applied data science tracks.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783032061171
    • Genre Information Technology
    • Editor Inês Dutra, Mykola Pechenizkiy, Paulo Cortez, Sepideh Pashami, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
    • Lesemotiv Verstehen
    • Anzahl Seiten 530
    • Größe H33mm x B155mm x T235mm
    • Jahr 2025
    • EAN 9783032061171
    • Format Kartonierter Einband
    • ISBN 978-3-032-06117-1
    • Titel Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track
    • Untertitel European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part IX
    • Gewicht 908g
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470