Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning and Knowledge Discovery in Databases
Details
The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022. The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions.
The volumes are organized in topical sections as follows:
Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning;
Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems;
Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search;
Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning;
Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability;
Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.
Inhalt
Reinforcement learning.- Multi-agent reinforcement learning.- Bandits and online learning.- Active and semi-supervised learning.- Private and federated learning.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031264115
- Genre Information Technology
- Auflage 1st edition 2023
- Editor Massih-Reza Amini, Stéphane Canu, Grigorios Tsoumakas, Tias Guns, Petra Kralj Novak, Asja Fischer
- Lesemotiv Verstehen
- Anzahl Seiten 688
- Größe H235mm x B155mm x T37mm
- Jahr 2023
- EAN 9783031264115
- Format Kartonierter Einband
- ISBN 3031264118
- Veröffentlichung 17.03.2023
- Titel Machine Learning and Knowledge Discovery in Databases
- Untertitel European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part IV
- Gewicht 1025g
- Herausgeber Springer Nature Switzerland
- Sprache Englisch