Machine Learning and Knowledge Discovery in Databases. Research Track

CHF 102.40
Auf Lager
SKU
OLHAGSOSLE9
Stock 1 Verfügbar
Geliefert zwischen Mi., 21.01.2026 und Do., 22.01.2026

Details

This multi-volume set, LNAI 16013 to LNAI 16022, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2025, held in Porto, Portugal, September 1519, 2025. The 300 full papers presented here, together with 15 demo papers, were carefully reviewed and selected from 1253 submissions. The papers presented in these proceedings are from the following three conference tracks: The Research Track in Volume LNAI 16013-16020 refers about Anomaly & Outlier Detection, Bias & Fairness, Causality, Clustering, Data Challenges, Diffusion Models, Ensemble Learning, Graph Neural Networks, Graphs & Networks, Healthcare & Bioinformatics, Images & Computer Vision, Interpretability & Explainability, Large Language Models, Learning Theory, Multimodal Data, Neuro Symbolic Approaches, Optimization, Privacy & Security, Recommender Systems, Reinforcement Learning, Representation Learning, Resource Efficiency, Robustness & Uncertainty, Sequence Models, Streaming & Spatiotemporal Data, Text & Natural Language Processing, Time Series, and Transfer & Multitask Learning. The Applied Data Science Track in Volume LNAI 16020-16022 refers about Agriculture, Food and Earth Sciences, Education, Engineering and Technology, Finance, Economy, Management or Marketing, Health, Biology, Bioinformatics or Chemistry, Industry (4.0, 5.0, Manufacturing, ...), Smart Cities, Transportation and Utilities (e.g., Energy), Sports, and Web and Social Networks The Demo Track in LNAI 16022 showcased practical applications and prototypes, accepting 15 papers from a total of 30 submissions. These proceedings cover the papers accepted in the research and applied data science tracks.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783032061089
    • Genre Information Technology
    • Editor Rita P. Ribeiro, Bernhard Pfahringer, Nathalie Japkowicz, Pedro Larrañaga, Alípio M. Jorge, Carlos Soares, Pedro H. Abreu, João Gama
    • Lesemotiv Verstehen
    • Anzahl Seiten 544
    • Größe H235mm x B155mm
    • Jahr 2025
    • EAN 9783032061089
    • Format Kartonierter Einband
    • ISBN 978-3-032-06108-9
    • Titel Machine Learning and Knowledge Discovery in Databases. Research Track
    • Untertitel European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part VII
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470