Machine Learning and Knowledge Discovery in Databases. Research Track

CHF 95.55
Auf Lager
SKU
U0ABBK15G6Q
Stock 1 Verfügbar
Geliefert zwischen Fr., 23.01.2026 und Mo., 26.01.2026

Details

This multi-volume set, LNAI 14941 to LNAI 14950, constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2024, held in Vilnius, Lithuania, in September 2024.

The papers presented in these proceedings are from the following three conference tracks: -

Research Track: The 202 full papers presented here, from this track, were carefully reviewed and selected from 826 submissions. These papers are present in the following volumes: Part I, II, III, IV, V, VI, VII, VIII.

Demo Track: The 14 papers presented here, from this track, were selected from 30 submissions. These papers are present in the following volume: Part VIII.

Applied Data Science Track: The 56 full papers presented here, from this track, were carefully reviewed and selected from 224 submissions. These papers are present in the following volumes: Part IX and Part X.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031703515
    • Genre Information Technology
    • Editor Albert Bifet, Jesse Davis, Tomas Krilavicius, Meelis Kull, Eirini Ntoutsi, Indr_ Zliobait_
    • Lesemotiv Verstehen
    • Anzahl Seiten 458
    • Größe H27mm x B155mm x T235mm
    • Jahr 2024
    • EAN 9783031703515
    • Format Kartonierter Einband
    • ISBN 978-3-031-70351-5
    • Titel Machine Learning and Knowledge Discovery in Databases. Research Track
    • Untertitel European Conference, ECML PKDD 2024, Vilnius, Lithuania, September 9-13, 2024, Proceedings, Part III
    • Gewicht 774g
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470