Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning and Knowledge Extraction
Details
This volume LNCS-IFIP constitutes the refereed proceedings of the 7th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2023 in Benevento, Italy, during August 28 September 1, 2023. The 18 full papers presented together were carefully reviewed and selected from 30 submissions. The conference focuses on integrative machine learning approach, considering the importance of data science and visualization for the algorithmic pipeline with a strong emphasis on privacy, data protection, safety and security.
Inhalt
Controllable AI - An alternative to trustworthiness in complex AI systems?.- Efficient approximation of Asymmetric Shapley Values using Functional Decomposition.- Domain-Specific Evaluation of Visual Explanations for Application-Grounded Facial Expression Recognition.- Human-in-the-Loop Integration of Domain-Knowledge Graphs for Explainable and Federated Deep Learning.- The Tower of Babel in explainable Artificial Intelligence (XAI).- Hyper-Stacked: Scalable and Distributed Approach to AutoML for Big Data.- Transformers are Short-text Classifiers.- Reinforcement Learning with Temporal-Logic-Based Causal Diagrams.- Using Machine Learning to Generate an ESG Dictionary.- Let me think! Investigating the effect of explanations feeding doubts about the AI advice.- Enhancing Trust in Machine Learning Systems by Formal Methods.- Sustainability Effects of Robust and Resilient Artificial Intelligence.- The Split Matters: Flat Minima Methodsfor Improving the Performance of GNNs.- Probabilistic framework based on Deep Learning for differentiating ultrasound movie view planes.- Standing Still is Not An Option: Alternative Baselines for Attainable Utility Preservation.- Memorization of Named Entities in Fine-tuned BERT Models.- Event and Entity Extraction from Generated Video Captions.- Fine-Tuning Language Models for Scientific Writing Support.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031408366
- Genre Information Technology
- Auflage 1st edition 2023
- Editor Andreas Holzinger, Peter Kieseberg, Edgar Weippl, Andrea Campagner, A Min Tjoa, Federico Cabitza
- Lesemotiv Verstehen
- Anzahl Seiten 336
- Größe H235mm x B155mm x T19mm
- Jahr 2023
- EAN 9783031408366
- Format Kartonierter Einband
- ISBN 3031408365
- Veröffentlichung 23.08.2023
- Titel Machine Learning and Knowledge Extraction
- Untertitel 7th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2023, Benevento, Italy, August 29 - September 1, 2023, Proceedings
- Gewicht 511g
- Herausgeber Springer Nature Switzerland
- Sprache Englisch