Machine Learning for Robotics

CHF 73.70
Auf Lager
SKU
NEIL85VCH75
Stock 1 Verfügbar
Geliefert zwischen Di., 18.11.2025 und Mi., 19.11.2025

Details

Autonomous robots have been a vision of robotics, artificial intelligence, and cognitive sciences. An important step towards this goal is to create robots that can learn to accomplish a multitude of different tasks triggered by environmental context and higher-level instruction. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s showed that handcrafted approaches do not suffice and that machine learning is needed. However, off the shelf learning techniques often do not scale into real-time or to the high-dimensional domains of manipulator and humanoid robotics. In this book, we investigate the foundations for a general approach to motor skill learning that employs domain-specific machine learning methods. A theoretically well-founded general approach to representing the required control structures for task representation and execution is presented along with novel learning algorithms that can be applied in this setting. The resulting framework is shown to work well both in simulation and on real robots.

Autorentext

Jan Peters heads the Robot Learning Lab at Max-Planck Institute for Biological Cybernetics. He graduated from Univ. of Southern California with a PhD in Computer Science. He studied Computer Science, Electrical & Mechanical Engineering in Munich, Singapore and Los Angeles and was a visiting researcher at National Univ. of Singapore and ATR in Japan. His research centers on motor skill learning and robotics.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639021103
    • Genre Technik
    • Sprache Englisch
    • Anzahl Seiten 128
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Größe H8mm x B220mm x T150mm
    • Jahr 2013
    • EAN 9783639021103
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-02110-3
    • Titel Machine Learning for Robotics
    • Autor Jan Peters
    • Untertitel Learning Methods for Robot Motor Skills
    • Gewicht 207g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470