Machine Learning in Complex Networks

CHF 132.00
Auf Lager
SKU
ELFQ7VH5SAP
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 04.11.2025 und Mi., 05.11.2025

Details

This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in thisbook, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.

This book combines two important and popular research areas: complex networks and machine learning This book contains not only fundamental background, but also recent research results Numerous illustrative figures and step-by-step examples help readers to understand the main idea and implementation details Includes supplementary material: sn.pub/extras

Inhalt
Introduction.- Complex Networks.- Machine Learning.- Network Construction Techniques.- Network-Based Supervised Learning.- Network-Based Unsupervised Learning.- Network-Based Semi-Supervised Learning.- Case Study of Network-Based Supervised Learning: High-Level Data Classification.- Case Study of Network-Based Unsupervised Learning: Stochastic Competitive Learning in Networks.- Case Study of Network-Based Semi-Supervised Learning: Stochastic Competitive-Cooperative Learning in Networks.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319792347
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st edition 2016
    • Größe H235mm x B155mm x T20mm
    • Jahr 2018
    • EAN 9783319792347
    • Format Kartonierter Einband
    • ISBN 3319792342
    • Veröffentlichung 30.03.2018
    • Titel Machine Learning in Complex Networks
    • Autor Liang Zhao , Thiago Christiano Silva
    • Gewicht 534g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 352
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.