Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning In Computational Finance
Details
In the first part of the book practical algorithms for building optimal trading strategies are constructed. Both non-restricted and risk-adjusted (Sterling ratio and Sharp ratio) trading strategies are considered. Constructed optimal trading strategies can be used as training dataset for the AI application. In the next part of the book one particular type of Machine Learning - finding optimal linear separators - is considered, and combinatorial deterministic algorithm for computing minimum linear separator set in 2 dimensions is given. In the last part of the book presented efficient algorithms for preventing overfitting. Shape constrained regression is an accepted methodology to deal with overfitting. Algorithms for nonparametric shape constrained regression in the form of isotonic and unimodal regressions are given.
Autorentext
Victor Boyarshinov was born in the family of Russian military pilot. Victor grew up in a small village on the shore of Okhotsk Sea. After finishing high school he went to Novosibirsk State University to get MS degree in Math. Later he graduated from Rensselaer Polytechnic Institute with Ph.D. in Computer Science. Currently he lives in Vancouver.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659118890
- Auflage Aufl.
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2012
- EAN 9783659118890
- Format Kartonierter Einband
- ISBN 3659118893
- Veröffentlichung 12.05.2012
- Titel Machine Learning In Computational Finance
- Autor Victor Boyarshinov
- Untertitel Practical algorithms for building artificial intelligence applications
- Gewicht 149g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 88
- Genre Wirtschaft