Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Translation
Details
This book constitutes the refereed proceedings of the 20th China Conference on Machine Translation, CCMT 2024, which took place in Xiamen, China, during November 810, 2024.
The 13 full papers included in this book were carefully reviewed and selected from 52 submissions. They were organized in topical sections as follows: robustness and efficiency of translation models; low-resource machine translation; quality estimation; large language modes for machine translation; multi-modal translation; and machine translation evaluation.
Inhalt
.- Robustness and Efficiency of Translation Models.
.- A Data-Efficient Nearest-Neighbor Language Model via Lightweight Nets.
.- Extend Adversarial Policy Against Neural Machine Translation via Unknown Token.
.- Low-resource Machine Translation.
.- Evaluating the Translation Performance of Multilingual Large Language Models: a Case Study on Southeast Asian Language.
.- Quality Estimation.
.- Critical Error Detection based on Anchors Test.
.- Large Language Modes for Machine Translation.
.- Enhancing Machine Translation Across Multiple Domains and Languages with Large Language Models.
.- Incorporating Terminology Knowledge into Large Language Model for Domain-specific Machine Translation.
.- Multi-modal Translation.
.- Joint Multi-modal Modeling for Speech-to-Text Translation as Multilingual Neural Machine Translation.
.- Machine Translation Evaluation.
.- CCMT2024 Tibetan-Chinese Machine Translation Evaluation Technical Report.
.- HW-TSC's Submission to the CCMT 2024 Machine Translation Task.
.- ISTIC's Neural Machine Translation Systems for CCMT' 2024.
.- Lan-Bridge's Submission to CCMT 2024 Translation Evaluation Task.
.- Technical Report of OPPO's Machine Translation Systems for CCMT 2024.
.- Xihong's Submission to CCMT 2024: Human-in-the-Loop Data Augmentation for Low-Resource Tibetan-Chinese NMT.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789819622917
- Genre Information Technology
- Editor Zhongjun He, Yidong Chen
- Lesemotiv Verstehen
- Anzahl Seiten 192
- Größe H235mm x B155mm x T11mm
- Jahr 2025
- EAN 9789819622917
- Format Kartonierter Einband
- ISBN 9819622913
- Veröffentlichung 20.02.2025
- Titel Machine Translation
- Untertitel 20th China Conference, CCMT 2024, Xiamen, China, November 8-10, 2024, Proceedings
- Gewicht 300g
- Herausgeber Springer Nature Singapore
- Sprache Englisch