Macroeconomic Forecasting in the Era of Big Data

CHF 371.05
Auf Lager
SKU
2AMM7AQ09R2
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 29.10.2025 und Do., 30.10.2025

Details

This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.


Presents a comprehensive collection of big data tools used in macroeconomic forecasting. Surveys the most recent developments in the field. Offers algorithmic descriptions of big data techniques for forecasting. Useful as a reference, a textbook, and a resource for professional forecasters.

Autorentext

Peter Fuleky is an Associate Professor of Economics with a joint appointment at the University of Hawaii Economic Research Organization (UHERO), and the Department of Economics at the University of Hawaii at Manoa. His research focuses on econometrics, time series analysis, and forecasting. He is a co-author of UHERO's quarterly forecast reports on Hawaii's economy. He obtained his Ph.D. degree in Economics at the University of Washington, USA.


Inhalt
Introduction: Sources and Types of Big Data for Macroeconomic Forecasting.- Capturing Dynamic Relationships: Dynamic Factor Models.- Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs.- Large Bayesian Vector Autoregressions.- Volatility Forecasting in a Data Rich Environment.- Neural Networks.- Seeking Parsimony: Penalized Time Series Regression.- Principal Component and Static Factor Analysis.- Subspace Methods.- Variable Selection and Feature Screening.- Dealing with Model Uncertainty: Frequentist Averaging.- Bayesian Model Averaging.- Bootstrap Aggregating and Random Forest.- Boosting.- Density Forecasting.- Forecast Evaluation.- Further Issues: Unit Roots and Cointegration.- Turning Points and Classification.- Robust Methods for High-dimensional Regression and Covariance Matrix Estimation.- Frequency Domain.- Hierarchical Forecasting.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030311490
    • Auflage 1st edition 2020
    • Editor Peter Fuleky
    • Sprache Englisch
    • Genre Volkswirtschaft
    • Größe H241mm x B160mm x T45mm
    • Jahr 2019
    • EAN 9783030311490
    • Format Fester Einband
    • ISBN 303031149X
    • Veröffentlichung 12.12.2019
    • Titel Macroeconomic Forecasting in the Era of Big Data
    • Untertitel Theory and Practice
    • Gewicht 1256g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 736
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.