Magic hypercube
CHF 43.20
Auf Lager
SKU
1A6LGOT5PQO
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025
Details
In mathematics, a magic hypercube is the k-dimensional generalization of magic squares, magic cubes and magic tesseracts; that is, a number of integers arranged in an n × n × n × ... × n pattern such that the sum of the numbers on each pillar (along any axis) as well as the main space diagonals is equal to a single number, the so-called magic constant of the hypercube, denoted Mk(n). It can be shown that if a magic hypercube consists of the numbers 1, 2, ..., nk, then it has magic numberIf, in addition, the numbers on every cross section diagonal also sum up to the hypercube's magic number, the hypercube is called a perfect magic hypercube; otherwise, it is called a semiperfect magic hypercube. The number n is called the order of the magic hypercube. Five-, six-, seven- and eight-dimensional magic hypercubes of order three have been constructed by J. R. Hendricks. Marian Trenkler proved the following theorem: A p-dimensional magic hypercube of order n exists if and only if p 1 and n is different from 2 or p = 1. A construction of a magic hypercube follows from the proof.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130692643
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2010
- EAN 9786130692643
- Format Fachbuch
- ISBN 978-613-0-69264-3
- Titel Magic hypercube
- Untertitel Mathematics, Dimension, Magic square, Magic cube, Magic tesseract, Integer, Space diagonal, Magic constant, Hypercube, Cross section (geometry)
- Gewicht 142g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 84
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung