Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mathematical Induction
Details
Mathematical induction is a method of mathematical proof typically used to establish that a given statement is true of all natural numbers. It is done by proving that the first statement in the infinite sequence of statements is true, and then proving that if any one statement in the infinite sequence of statements is true, then so is the next one. The method can be extended to prove statements about more general well-founded structures, such as trees; this generalization, known as structural induction, is used in mathematical logic and computer science.
Klappentext
Mathematical induction is a method of mathematical prooftypically used to establish that a given statement istrueof all natural numbers. It is done by proving that thefirst statement in the infinite sequence of statements istrue, and then proving that if any one statement in theinfinite sequence of statements is true, then so isthe nextone. The method can be extended to prove statements aboutmore general well-founded structures, such as trees; thisgeneralization, known as structural induction, isused inmathematical logic and computer science.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130002893
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B150mm x T22mm
- Jahr 2009
- EAN 9786130002893
- Format Fachbuch
- ISBN 978-613-0-00289-3
- Titel Mathematical Induction
- Untertitel Mathematical proof, Mathematical logic
- Gewicht 552g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 360
- Genre Mathematik