Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mathematical Statistics
Details
Financial data have, among others, a particular feature: large values of such series cluster, we are concerned with estimation of clustering probabilities for univariate heavy tailed time series. We describe regular variation as a tool to model heavy tails. We summarize some results on the central limit theorem (CLT) and tightness of stochastic processes. These tools are needed to prove asymptotic normality of our estimator. We employ functional convergence of a bivariate tail empirical process,regular variation property and Lindeberg's CLT and the -mixing property with geometric rates to conclude asymptotic normality of an estimator of the clustering probabilities. Theoretical results are illustrated by simulation studies.
Autorentext
M. Sc. in Mathematics and Statistics, University of Ottawa, Canada (2013). Postgraduate Diploma in Statistics, African Institute for Mathematical Sciences, South Africa (2011). Honours B. Sc. in Mathematics and Statistics, University Marien Ngouabi, Congo Brazzaville (2009). Research Interests: Time Series Analysis
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659543807
- Sprache Englisch
- Größe H220mm x B150mm x T4mm
- Jahr 2014
- EAN 9783659543807
- Format Kartonierter Einband
- ISBN 3659543802
- Veröffentlichung 29.05.2014
- Titel Mathematical Statistics
- Autor Herve Dimy Anguima Ibondzi , Rafal Kulik
- Untertitel Time Series Analysis
- Gewicht 107g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 60
- Genre Mathematik