Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mathematical Structures
Details
This textbook is intended to be accessible to any second-year undergraduate in mathematics who has attended courses on basic real analysis and linear algebra. It is meant to help students to appreciate the diverse specialized mathematics courses offered at their universities. Special emphasis is on similarities between mathematical fields and ways to compare them. The organizing principle is the concept of a mathematical structure which plays an important role in all areas of mathematics.
The mathematical content used to explain the structural ideas covers in particular material that is typically taught in algebra and geometry courses. The discussion of ways to compare mathematical fields also provides introductions to categories and sheaves, whose ever-increasing role in modern mathematics suggests a more prominent role in teaching.
The book is the English translation of the second edition of Mathematische Strukturen (Springer, 2024) written in German. The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.
Provides an introduction to the mathematical structures that are of great importance in modern fields such as algebraic geometry Shows the interplay of elementary structures and discusses details that are important for understanding Contains a multitude of examples
Autorentext
Joachim Hilgert is a retired professor of mathematics at the University of Paderborn.
Inhalt
I Algebraic Structures.- 1 Rings.- 2 Modules.- 3 Multilinear Algebra.- 4 Pattern Recognition.- II Local Structures.- 5 Sheaves.- 6 Manifolds.- 7 Algebraic Varieties.- III Outlook.- 8 Transfer of Arguments and Structures.- 9 Specialization, Generalization and Unification of Structures.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783662694114
- Lesemotiv Verstehen
- Genre Maths
- Auflage 2024
- Anzahl Seiten 344
- Herausgeber Springer Berlin Heidelberg
- Größe H235mm x B155mm x T19mm
- Jahr 2024
- EAN 9783662694114
- Format Kartonierter Einband
- ISBN 978-3-662-69411-4
- Veröffentlichung 07.08.2024
- Titel Mathematical Structures
- Autor Joachim Hilgert
- Untertitel From Linear Algebra over Rings to Geometry with Sheaves
- Gewicht 522g
- Sprache Englisch