Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Mathematics of Public Health
Details
Curated by the Fields Institute for Research in Mathematical Sciences from their COVID-19 Math Modelling Seminars, this first in a series of volumes on the mathematics of public health allows readers to access the dominant ideas and techniques being used in this area, while indicating problems for further research. This work brings together experts in mathematical modelling from across Canada and the world, presenting the latest modelling methods as they relate to the COVID-19 pandemic.
A primary aim of this book is to make the content accessible so that researchers share the core methods that may be applied elsewhere. The mathematical theories and technologies in this book can be used to support decision makers on critical issues such as projecting outbreak trajectories, evaluating public health interventions for infection prevention and control, developing optimal strategies to return to a new normal, and designing vaccine candidates and informing mass immunization program.
Topical coverage includes: basic susceptible-exposed-infectious-recovered (SEIR) modelling framework modified and applied to COVID-19 disease transmission dynamics; nearcasting and forecasting for needs of critical medical resources including personal protective equipment (PPE); predicting COVID-19 mortality; evaluating effectiveness of convalescent plasma treatment and the logistic implementation challenges; estimating impact of delays in contact tracing; quantifying heterogeneity in contact mixing and its evaluation with social distancing; modelling point of care diagnostics of COVID-19; and understanding non-reporting and underestimation.
Further, readers will have the opportunity to learn about current modelling methodologies and technologies for emerging infectious disease outbreaks, pandemic mitigation rapid response, and the mathematics behind them. The volume will help the general audience and experts to better understand the important role that mathematics has been playing during this on-going crisis in supporting critical decision-making by governments and public health agencies.
Allows students of mathematics to see the value of these methodologies applied to a global real-world problem Contains detailed explanations of mathematical models and their assumptions and limitations Provides a broad array of relevant mathematical models and current, timely research
Inhalt
Diverse local epidemics reveal the distinct effects of population density, demographics, climate, depletion of susceptibles, and intervention in the first wave of COVID-19 in the United States (N. Ashfordi, B. Holder, M. Bahrami, D. Lichtblau).- Describing, modelling and forecasting the spatial and temporal spread of COVID-19 (J. Arino).- A logistic growth model with logistically varying carrying capacity for Covid-19 deaths using data from Ontario, Canada (G. Bucyibaruta, C.B. Dean, E.M. Renouf).- COVID-19 in Ontario (R. Fields, L Humphrey, E.W. Thommes, M.G. Cojocaru).- Sub-epidemic model forecasts during the first wave of the COVID-19 pandemic in the USA and European hotspots (G. Chowell, R. Rothenberg, K. Roosa, A. Tariq, J.M. Hyman, R. Luo).- A Model on the Large Scale Use of Convalescent Plasma to Treat Patients with Severe Symptoms (X. Huo).- Don't wait, re-escalate: delayed action results in longer duration of COVID-19 restrictions (A. Hurford, J. Watmough).- Generalized Additive Models to Capture the Death Rates in Canada COVID-19 (F. Izadi).- Real-time prediction of the end of an epidemic wave (Q. Griette, Z. Liu, P. Magal, R.N. Thompson).- The Effect that Heterogeneity in Social Distancing Has on the Infection Peak (C. McCluskey).- Forecasting PPE Demand for Ontario Acute Care Hospitals During COVID-19 (B. Sander).- Learning COVID-19 Mitigation Strategies using Reinforcement Learning (N. Denis, A. El-Hajj, B Drummond, Y. Abiza, K.C. Gopaluni).- Joint Modeling of Hospitalization and Mortality of Ontario Covid-19 cases (D.Z. Xi).- Evaluating the risk of reopening the border: a case study of Ontario (Canada) to New York (USA) using mathematical modeling (P. Yuan, E. Aruffo, Q. Li, J. Li, Y. Tan, T. Zheng, J. David, N. Ogden, E. Gatov, E. Gournis, S. Collier, B. Sander, G. Fan, J. Heffernan, J. Li, J.D. Kong, J. Arino, J. Belair, J. Watmough, H. Zhu).- Optimal staged reopening schedule based on ICU capacity (K. Nah, M. Chen, A. Asgary, Z. McCarthy, F. Scarabel, Y. Xiao, N.L. Bragazzi, J.M. Heffernan, N.H. Ogden, J.Wu).- Mathematics of the Pandemic (M.R. Murty, V.K. Murty).- A mathematical model for evaluating the impact of non-pharmaceutical interventions on the COVID-19 epidemic in the United Kingdom (H. Zhu).- COVID-19 in Japan (H. Nishiura).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030850555
- Lesemotiv Verstehen
- Genre Maths
- Auflage 1st edition 2022
- Editor Jianhong Wu, V. Kumar Murty
- Anzahl Seiten 364
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T20mm
- Jahr 2023
- EAN 9783030850555
- Format Kartonierter Einband
- ISBN 3030850552
- Veröffentlichung 09.02.2023
- Titel Mathematics of Public Health
- Untertitel Proceedings of the Seminar on the Mathematical Modelling of COVID-19
- Gewicht 552g
- Sprache Englisch