Matrix-Exponential Distributions in Applied Probability

CHF 137.15
Auf Lager
SKU
9TNRKITE1S9
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025

Details

This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatmenton statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications.


Only book that treats the theory of matrix-exponential distributions comprehensively Students will benefit from obtaining general tools which may be applied in a variety of situations. The matrixexponential methodology allows for calculating quantities in advanced stochastic models explicitly

Autorentext
Bo Friis Nielsen is an associate professor in the Department of Applied Mathematics and Computer Science at the Technical University of Denmark.
Mogens Bladt is a researcher in the Department of Probability and Statistics at the Institute for Applied Mathematics and Systems, National University of Mexico (UNAM).

Inhalt
Preface.- Notation.- Preliminaries on Stochastic Processes.- Martingales and More General Markov Processes.- Phase-type Distributions.- Matrix-exponential Distributions.- Renewal Theory.- Random Walks.- Regeneration and Harris Chains.- Multivariate Distributions.- Markov Additive Processes.- Markovian Point Processes.- Some Applications to Risk Theory.- Statistical Methods for Markov Processes.- Estimation of Phase-type Distributions.- Bibliographic Notes.- Appendix.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781493970476
    • Lesemotiv Verstehen
    • Genre Maths
    • Auflage 1st edition 2017
    • Anzahl Seiten 756
    • Herausgeber Springer US
    • Größe H241mm x B160mm x T44mm
    • Jahr 2017
    • EAN 9781493970476
    • Format Fester Einband
    • ISBN 149397047X
    • Veröffentlichung 19.05.2017
    • Titel Matrix-Exponential Distributions in Applied Probability
    • Autor Bo Friis Nielsen , Mogens Bladt
    • Untertitel Probability Theory and Stochastic Modelling 81
    • Gewicht 1422g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.