Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Measuring Glycemic Variability and Predicting Blood Glucose Levels
Details
This work presents research in machine learning for diabetes management. There are two major contributions:(1) development of a metric for measuring glycemic variability, a serious problem for patients with diabetes; and (2) predicting patient blood glucose levels, in order to preemptively detect and avoid potential health problems. The glycemic variability metric uses machine learning trained on multiple statistical and domain specific features to match physician consensus of glycemic variability. The metric performs similarly to an individual physician's ability to match the consensus. When used as a screen for detecting excessive glycemic variability, the metric outperforms the baseline metrics. The blood glucose prediction model uses machine learning to integrate a general physiological model and life-events to make patient-specific predictions 30 and 60 minutes in the future. The blood glucose prediction model was evaluated in several situations such as near a meal or during exercise. The prediction model outperformed the baselines prediction models, and performed similarly to, and in some cases outperformed, expert physicians who were given the same prediction problems.
Autorentext
Master's degree in Computer Science focusing on Artificial Intelligence from Ohio University (2013), Bachelor's degree in Computer Science from Ohio University (2011).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659168697
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2014
- EAN 9783659168697
- Format Kartonierter Einband
- ISBN 3659168696
- Veröffentlichung 22.04.2014
- Titel Measuring Glycemic Variability and Predicting Blood Glucose Levels
- Autor Nigel Struble
- Untertitel Using Machine Learning Regression Models
- Gewicht 167g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 100
- Genre Informatik