Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Messy Data in Heteroscedastic Models Case study: Mixed-Nested Design
Details
Missing data are popular in real experiments. Messy data may give rise to heterogeneity of variance, where missing of data are dramatically different than any analyze of these data is based. Missing data may all cell is empty or loss some observation in the cell which mean unbalanced data. In this book attempts to investigate the theoretical side of nested design analysis in the case of unbalanced model in the situation where approximate methods such as unweighted means are inappropriate. Instead of estimate the missing observations; In this book author adjusted the estimating methods to deal with messy data problem.
Autorentext
Intesar N. El-Saeiti from Libya, she got her Ph.D in Applied Statistics & Research Methods at Northern University, Colorado- America USA .Currently, she is a Lecturer at the Statistics department at the University of Benghazi.Language: Arabic and English; Good computer skills especially statistics programs SAS, R, and SPSS.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659685965
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2015
- EAN 9783659685965
- Format Kartonierter Einband
- ISBN 3659685968
- Veröffentlichung 09.02.2015
- Titel Messy Data in Heteroscedastic Models Case study: Mixed-Nested Design
- Autor Intesar El-Saeiti
- Gewicht 155g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 92
- Genre Mathematik