Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Metaheuristic Optimization via Memory and Evolution
Details
Tabu Search (TS) and, more recently, Scatter Search (SS) have proved highly effective in solving a wide range of optimization problems, and have had a variety of applications in industry, science, and government. The goal of Metaheuristic Optimization via Memory and Evolution: Tabu Search and Scatter Search is to report original research on algorithms and applications of tabu search, scatter search or both, as well as variations and extensions having "adaptive memory programming" as a primary focus. Individual chapters identify useful new implementations or new ways to integrate and apply the principles of TS and SS, or that prove new theoretical results, or describe the successful application of these methods to real world problems.
Unique in its treatment of the new linkage technology in Adaptive Memory Programming (AMP), which allows researchers to link major heuristic strategies together and the linked combination provides a wider and more problem-solving power
Inhalt
Advances for New Model and Solution Approaches.- A Scatter Search Tutorial for Graph-Based Permutation Problems.- A Multistart Scatter Search Heuristic for Smooth NLP and MINLP Problems.- Scatter Search Methods for the Covering Tour Problem.- Solution of the SONET Ring Assignment Problem with Capacity Constraints.- Advances for Solving Classical Problems.- A Very Fast Tabu Search Algorithm for Job Shop Problem.- Tabu Search Heuristics for the Vehicle Routing Problem.- Some New Ideas in TS for Job Shop Scheduling.- A Tabu Search Heuristic for the Uncapacitated Facility Location Problem.- Adaptive Memory Search Guidance for Satisfiability Problems.- Experimental Evaluations.- Lessons from Applying and Experimenting with Scatter Search.- Tabu Search for Mixed Integer Programming.- Scatter Search vs. Genetic Algorithms.- Review of Recent Developments.- Parallel Computation, Co-operation, Tabu Search.- Using Group Theory to Construct and Characterize Metaheuristic Search Neighborhoods.- Logistics Management.- New Procedural Designs.- On the Integration of Metaheuristic Strategies in Constraint Programming.- General Purpose Metrics for Solution Variety.- Controlled Pool Maintenance for Metaheuristics.- Adaptive Memory Projection Methods for Integer Programming.- RAMP: A New Metaheuristic Framework for Combinatorial Optimization.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441954831
- Auflage Softcover reprint of hardcover
- Editor Cesar Rego, Bahram Alidaee
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm
- Jahr 2010
- EAN 9781441954831
- Format Kartonierter Einband
- ISBN 978-1-4419-5483-1
- Veröffentlichung 08.12.2010
- Titel Metaheuristic Optimization via Memory and Evolution
- Autor Cesar Rego
- Untertitel Tabu Search and Scatter Search
- Gewicht 730g
- Herausgeber Springer
- Anzahl Seiten 466